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Equivalence of two free-energy models for the inhomogeneous hard-sphere fluid
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It is shown that the free-energy model for the inhomogeneous hard-sphere fluid introduced by Rosen-
feld [Phys. Rev. Lett. 63, 980 (1989)], which contains both vector and scalar contributions, and the fully
scalar expression proposed subsequently by Kierlik and Rosinberg [Phys. Rev. A 42, 3382 (1990)]
represent two equivalent forms of the same functional. This unexpected result was partly obscured by a

sign error in the original derivation of the vector part.

PACS number(s): 61.20.Gy

I. INTRODUCTION

Over the past decade, the use of density-functional
(DF) methods has considerably improved our under-
standing of inhomogeneous classical fluids and interfacial
phenomena. This success is due to the development of
sophisticated approximation schemes for the intrinsic
Helmholtz free energy F[p], which is a unique functional
of the one-body density p(r) for a given intermolecular
potential ¢(7). For simple (atomic) fluids described by a
pairwise potential of Lennard-Jones type, most DF
theories are based on the separation of ¢(r) into attrac-
tive and repulsive contributions. Attractive forces are
usually treated in a mean-field fashion while repulsive
forces are modeled by hard spheres. Therefore, a major
goal of the theory in recent years has been the develop-
ment of an accurate free-energy functional for the nonun-
iform hard-sphere fluid. The most popular theories are
the so-called “weighted-density approximations” (WDA),
which introduce some coarse-graining procedure where-
by p(r) is averaged over a local volume. Various versions
have been proposed that correspond to different recipes
for the averaging procedure (for a comprehensive recent
review, see [1]). An appealing approach is the one pro-
posed by Rosenfeld [2], which is an important improve-
ment over other versions in that it makes an optimal use
of geometric considerations and is specifically designed
for mixtures, while other recipes encounter difficulties
when extended to multicomponent fluids. Rosenfeld’s
theory is intimately related to the scaled particle descrip-
tion of the hard-sphere fluid [3] and, by construction, the

Percus Yevick (PY) pair direct-correlation functions :

(r [4] are reproduced in the limit of the uniform fluid.
Slmple analytic expressions of the n-body direct-
correlation functions are also obtained in Fourier space,
and the predictions for the triplet function are in good
agreement with extensive Monte Carlo simulations [5].

In Rosenfeld’s original derivation, the free-energy
model contains both scalar and vector contributions, ow-
ing to his choice of the set of functions required to
decompose the pair-exclusion step function [which is the
exact low-density limit of cm(r )] in terms of purely
geometrical factors. The poss1b111ty that weighted densi-
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ties could be vectors was suggested in an earlier work of
Percus [6]. However, this choice is not unique and, sub-
sequently, two of us [7] (hereafter noted KR) proposed a
simplified version of this approach, using only scalar
weight functions. This second version of the theory has
been shown to predict very well the density profile of
hard-sphere fluids near hard and soft walls [7] and has
been used to describe the adsorption of simple fluids at
solid surfaces or inside narrow pores [8—10]. Another
advantage of this DF theory is that it is numerically
much simpler than most other WDA’s.

Apart from the introduction of vector weight func-
tions, there seem to be some other differences between the
Rosenfeld and KR versions. They do not yield the same

¢® (although numerical results are close) and do not pre-
dlct the same free energy for the crystal phase (both
theories fail to describe the freezing transition, but, ap-
parently, for opposite reasons). However, as shown
below, these discrepancies are due to an unfortunate er-
ror of sign in Rosenfeld’s derivation [2]. In fact, when
this error is corrected, it turns out that the two theories
become completely equivalent. The object of this report
is to give the proof of this unexpected result.

II. TWO VERSIONS OF THE FREE-ENERGY
FUNCTIONAL

Both versions of the free-energy functional are based
on the assumption that the excess free energy of an n-
component hard-sphere fluid mixture can be written as

BF{p:}1= [ dr®({n,(r)}), (1

where ® is a general function of linear averages or
weighted densmes,

na(r)=2 fdr'pi(r’)wﬁ""(r—r’) , 2)
i=1

pi(r) is the density of particles of species i, and the
weights ©{*(r) are individual-sphere functions that
characterize the geometry of the particles and are density
independent. This form of the free energy is suggested by
the exact result for the one-dimensional hard rods [11]
and by the remarkable structure of the PY pair direct-
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correlation function, as described by Rosenfeld [12],
—cP(n=xPAV;(r+x'PAS;;(r)
+xVAR;(r)+x'YO(R,+R;—r), 3)

where R; is the radius of a sphere of species i, AV;; and
AS;; are, respectively, the overlap volume and the overlap
surface area of two spheres belonging to species i and j,
and O(r) is the Heaviside function [O(r <0)=0,
O(r>0)=1]. AR;; is a further geometrical measure, and
the coefficients X(kl) depend only on the four basic vari-
ables of the scaled particle theory [3]

g = é piR¥
i=1
where R/©=1, R\V=R,, R/ =4wR}? R* =47R} /3 are
the “fundamental measures” characterizing a particle of
species i.

The two versions of the theory differ in their choice of
® and of the weight functions o!*(r) (a more detailed
discussion can be found in [1], [2], and [7]). In
Rosenfeld’s version [2], ® contains both a scalar and a
vector part

D=0 ({7,(r)})+D ({7,

k=1,2,3,4, 4)

with
D, ({ny(r)})=—rgn(1—7;3)+ L) + 1 Gk
s a 0 3 1~rT3 24 (l—ﬁ3)2 ’
(6)
I-ll‘ﬁz 1 ﬁz(ﬁz'ﬁz)
D ({f,(r),fgr)})=— e ,
A (), Bylr)] 1—n, 87 (1—m,)
and the weight functions are
a3(r)=O6(R;,—r), @' (r)=air)/47R, ,
a2(rN=8R,—r), a (r\=a(r)/47R}? , @)

5&2’(r)=§8(R,.—r) , @)= (r) /4R, .

In these equations and in the following, we use the over-
bar to distinguish the functions introduced by Rosenfeld
from those used by KR.

@, is just the PY (compressibility) result, expressed in
terms of scaled particle variables. Note the minus sign in
the vector part @, in Eq. (6), in contrast with Rosenfeld’s
original expression [2, 5] This was due to an error in the
Fourier transform of c 2)(r), expressed as a sum of prod-
ucts of weight functlons From Egs. (1), (2), and (5), one
obtains

P
= 9P
ey (k) 5 on,on

+3 22 500)85 (k) . (8)
b, Ongdng

The minus sign in o, is irrelevant when the Fourier trans-
forms of the weights are even functions of k, which is the
case for the scalar weights. But the vector weights

defined by Eq. (7) are odd functions in k space, and one

B k)B \(—k)

has to change the sign of the vector contribution to ® in
[2,5] in order to recover the correct PY result for c,-(jz’( k).
In the KR version [7], one has simply

P=P ({n,r)}), 9)
with four scalar weight functions defined by
0P (= (r=6(R;—r),

o) =aP(r)=8(R;—r) ,
(10)

o(r)=-L8(R,—r),
o

oO(r)= —-#8"(R,-—r)+ 2—717;8'(Ri—r) ,
where 8'(r) and 8''(r) are the first and second derivatives
of 8(r), respectively. The introduction of the derivatives
of the 6 function is the price to pay for not using vector
functions.

At first sight, the two forms of the free energy look
different. However, they are equivalent, as we prove in
Sec. II1.

III. PROOF OF THE EQUIVALENCE
OF THE TWO FORMS

To show the equivalence of the two descriptions, let us
consider the quantity [dr(®—®). Since n;(r)=n,(r)
and n,(r)=7,(r), we find

[ dx@—@)= [ dr

_‘(ﬁo"'no)ln(l_n:;)

(y—ny)n,—@ -0,
1"‘”3
n,(i,-i,)
L na(l ;) m
877 (1"’13)
On the other hand, since
n,(r)=—Vn,(r), (12)
we have
n,-m,
f r— dr—fn1 ‘Vin(l—n;)dr
=—fV-ﬁ‘1n(1—n3)dr,
o (13)
n,-m,
—_— n,i. dr
fnz(l—n3)2 ~ J v 1“”3
f V- (n2n2)
1_n3
=— [ (V-V)n,—2—dr
3 1_n3

— [ (V-V)nyIn(1—n3)dr

where we have used several integrations by parts and
neglected the surface terms. Inserting in Eq. (11), we ob-
tain
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= _ — 1

[ dr@—@)=] [ l-—no+n0+V-n,+g(V-V)n2
Now, from Egs. (2), (7), and (12), we have
—-ﬁo(r)+n0(r)+V-ﬁl(r)+—81;(V~V)n2(r)

n (.2)(1')
— 1t 0
_iglpi(l'b 7RZ +o{%(r)
_ (V-V)ePr) 4 (V-V)o{¥(r)
47R; 87 ’

Fll(r)—nl(r)+§1;(V-V)n3(r)

aJi-Z)(l')
47TRi

_wgl)(r)

=2 pi(r)e

(V-V)o(r) ]

8m
(15)

where o denotes the convolution. Going to k space and
using the Fourier transforms of the weights o{* [7], it is
easy to see that the two combinations of the weight func-
tions that appear in Egs. (15) are identically zero. Thus,
we finally obtain

[ dr@—-®)=0, (16)

which proves the equivalence of the two expressions of
the functional.

This demonstration is valid for any type of inhomo-
geneity. However, as an additional verification, we have
checked explicitly that the two different sets of weight
functions yield the same result even for extremely inho-
mogeneous density profiles, as in the two-dimensional
(2D) limit considered in Ref. [8], where the density has

In(1—n,)+

ﬁ,—n1+—81;(V-V)n3

ny
]dr . (14)
1—n3

—

the form p(r)=p,pd(z), or for a solidlike density
represented by a superposition of Gaussian peaks. In the
first case, the free energy is in very good agreement with
the simulation data for hard disks [8], and this is the
reason why this functional is well suited for applications
to adsorption of gas or liquids at planar surfaces or in
slit-shaped pores. In the latter case, the free energy de-
creases extremely rapidly with the Gaussian width and is
always lower than that of the liquid; the theory is thus in-
herently unsuited for applications to freezing (the result
in Ref. [2] is erroneous because of the wrong sign in the
vector part of ®). Of course, in the uniform three-
dimensional fluid, the n-body direct-correlation functions
calculated from the two descriptions are all identical. In
fact, this could be an alternative proof of the equivalence.
In particular, ¢® behaves as shown in Ref. [7].

In summary, we have shown that the free-energy mod-
els for the hard-sphere fluid based on Rosenfeld’s idea to
generalize scaled particle theory to nonuniform situations
are more uniquely defined than thought previously [1,7],
since the apparent freedom in choosing the weight func-
tions that correspond to the PY theory in the uniform
fluid is immaterial. This reinforces the belief that this ver-
sion of DF theory is better founded than other WDA'’s.
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